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For example, if N = 300, p, = 5 per cent, L = 2 per cent and a = 5 per cent, the required s 
is given by equation (2) as 

whereas the usual normal approximation to the binomial approximation, B(p, s), yields 

which is much bigger than the batch it is to be selected from. 

REFERENCES 

GNEDENKO,
B. V. (1967). 7heory of Probability, 4th ed., translated by B. D. Seckler, pp. 94-103. New York: Chelsea. 

Appl. Statist. (1982), 
31, No. 3, pp. 300-303 

A Note on the Use of Principal Components 
in Regression 

By IAN T. JOLLIFFE 

Unicersity of Kent 

[Received February 1982. Revised June 19821 

SUMMARY 
The use of principal components in regression has received a lot of attention in the 
literature in the past few years, and the topic is now beginning to appear in textbooks. 
Along with the use of principal component regression there appears to have been a 
growth in the misconception that the principal components with small eigenvalues will 
very rarely be of any use in regression. The purpose of this note is to demonstrate that 
these components can be as important as those with large variance. This is illustrated 
with four examples, three of which have already appeared in the literature. 
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THE idea of using principal components in regression is not new. Kendall(1957) suggested it in 
his book on Multivariate Analysis, as did Hotelling (1957) in an article in the same year, and a 
well-known example was given by Jeffers (1967). The use of principal components envisaged by 
these authors was to replace the original regressor variables by their principal components, 
thus orthogonalizing the regression problem and making computations easier and more 
stable. 

More recently the subject has received a lot of attention in the literature, including 
discussion of various alternatives or modifications to the original idea, and of links with other 
forms of biased regression. The topic has even began to appear in some student textbooks, e.g. 
Mosteller and Tukey (1977), Mardia et al. (1979) and Gunst and Mason (1980). 
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Along with the growth of interest in principal component regression, a misconception 
seems to-be becoming established, concerning the rule for deciding which principal compo- 
nents should be kept in the regression. The original idea was to treat the principal components 
in the same way as ordinary regressor variables, and assess whether they should be included by 
computing their association with the dependent variable. However, in several recent 
publications the suggested rule for inclusion is simply based on the variance of the component, 
i.e. retain those components with large variances and reject those with small variances. 

For example, Mansfield et al. (1977, p. 38) suggest that if the only components deleted are 
those with small variance then there is very little loss of predictiveness in the regression. Some 
examples which follow later will show that this need not be true. 

In the book by Gunst and Mason (1980), 12 pages are devoted to principal component 
regression, and most of the discussion assumes that deletion of principal components is based 
solely on the sizes of their variances. An alternative strategy is briefly mentioned but is said to 
be less useful in practice (pp. 327-328). Note, however, that in a later section of the book, 
dealing with the rather different technique of latent root regression, the authors implicitly 
recognise that small-variance components may have predictive value. 

Mosteller and Tukey (1977, pp. 397-398) argue similarly that the components with small 
variance are unlikely to be important in regression, apparently on the basis that nature is 
"tricky, but not downright mean". We shall see in the examples below that without too much 
effort we can find examples where nature is "downright mean". 

Hocking (1976, p. 31) is even firmer in defining a rule for retaining principal components in 
regression based on size of variance. He says that various authors, including Kendall (1957), 
Jeffers (1967), Massey (1965) and Hawkins (1973), recommend transforming to principal 
components and deleting components with small variances. Again this is not true; Jeffers 
(1967, p. 230) specifically states that relations between the dependent variable and all of the 
components should be examined since it is always possible that one of the components with 
small variance may be related to the dependent variable. Kendall (1957) is more ambiguous, 
although he does mention using t-tests to test the significance of the components (p. 71) 
without, at that point, mentioning the variance of components. Hotelling (1957) and also 
Massy (1965) are unequivocal in saying that even the last (i.e. smallest variance) component 
can be important in the regression. 

Part of the misconception over the role of the low-variance components may have been due 
to the examples given by Kendall(1957) and Jeffers (1967). These were for a long time the best 
known examples in the literature and in both cases only the large-variance components were 
important-the first 3 of 5 for Kendall, and the first 6 of 13 for Jeffers. Note, however, that 
Mardia et al. (1979) in their analysis of Jeffers' data claim that some of the later components 
(seventh, eighth and twelfth out of 13 in order of decreasing variance) are important in the 
regression too. Jeffers (1981) has recently reanalysed his data using one of the several 
modifications to principal component regression which have been suggested in the past few 
years. In this technique, due to Hawkins (1973), the principal component analysis is done on 
all the variables, including the dependent variable, and the principal components of most 
interest are those with small variances. In introducing this technique, Hawkins (1973) also 
pointed out that in the usual form of principal component regression there is no guarantee that 
the low-variance components will be unimportant. 

It is not too difficult to find exam~les  i n  the literature where some of the last few (low 
variance) components are important. As a first example, Smith and Campbell (1980) give an 
example from chemical engineering. There are nine regressor variables and when principal 
component regression is used the principal components which are important are (in order of 
decreasing variance) the first, third, fourth, sixth, seventh and eighth. The eighth accounts for 
only 0.06 per cent of the variance and would be rejected on any "low variance" criterion. 

A second example is provided by Kung and Sharif (1980). In a study of the prediction of 
monsoon onset date from ten meteorological variables it is found that the most important 
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principal components in a regression equation are the eighth, second and tenth, in that order, 
i.e. the principal component with the smallest variance, accounting for less that 1 per cent of 
the variability in the original regressor variables, is the third most important variable in the 
regression equation. 

A third example, this time from economics, is given by Hill et al. (1977). In this six-variable 
example the fourth and fifth components should both be included in the regression despite 
contributing only 0.25 per cent, 0.04 per cent of the variation in the original variables. 

The fourth and final example is a simple one, drawn from meteorology. Suppose that it is 
required to predict the height of the cloud-base, H, an important problem at airports. Various 
climatic variables are measured including surface temperature T,, and surface dewpoint, T,. 
Here, T,is the temperature at which the surface air would be saturated with water vapour, and 
the difference T,- T,  is a measure of surface humidity. Now T,,Td are generally positively 
correlated, so a principal component analysis of the climatic variables will have a high- 
variance component which is highly correlated with T,+ Td,and a low-variance component 
which is similarly correlated with T,-T,. But H is related to humidity and hence to T,-T,, i.e. 
to a low-variance rather than a high-variance component, so a strategy which rejects low- 
variance components will give poor predictions for H. 

The discussion of this example is necessarily vague because of the unknown effects of any 
other climatic variables which are also measured and included in the analysis. However, it 
shows a physically plausible case where a dependent variable will be related to a low-variance 
component, confirming the three empirical examples from the literature. 

Furthermore, the cloud-base example has been tested on data from Cardiff (Wales) Airport 
for the period 1966-73 with one extra climatic variable, sea-surface temperature, also included. 
Results were essentially as predicted above. The last principal component was approximately 
T,- T,, and it accounted for only 0.4 per cent of the total variation. However, in a principal 
component regression it was easily the most important predictor for H. 

The above examples have shown that it is not necessary to find obscure or bizarre data in 
order for the last few principal components to be important in principal component regression. 
Rather it seems that such examples may be rather common in practice. Hill et al. (1977) give a 
thorough and useful discussion of strategies for selecting principal components which should 
have buried forever the idea of selection based solely on size of variance. Unfortunately this 
does not seem to have happened, and the idea is perhaps more widespread now than 20 years 
ago. 
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